Search results for " Thermal filters"

showing 5 items of 5 documents

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

2016

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

CryostatX-ray AstronomyAtomic and Molecular Physics and OpticATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Condensed Matter Physics; Atomic and Molecular Physics and Optics; Materials Science (all)ShieldsCondensed Matter Physic01 natural sciencesThermal Filterlaw.invention010309 opticsTelescopeATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsOpticsSettore FIS/05 - Astronomia E AstrofisicaConceptual designlawAtomic and Molecular Physics0103 physical sciencesGeneral Materials ScienceElectronics010303 astronomy & astrophysicsThermal FiltersPhysicsX-ray astronomyX-IFUbusiness.industryDetectorCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENACardinal pointMaterials Science (all)and Opticsbusiness
researchProduct

Synchrotron x-ray transmission measurements and modeling of filters investigated for Athena

2020

International audience; Advanced Telescope for High-Energy Astrophysics is a large-class astrophysics space mission selected by the European Space Agency to study the theme "Hot and Energetic Universe." The mission essentially consists of a large effective area x-ray telescope and two detectors: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both instruments require filters to shield from out-of-band radiation while providing high transparency to x-rays. The mission is presently in phase B; thus, to consolidate the preliminary design, investigated filter materials need to be properly characterized by experimental test campaigns. We report results from high-resolution…

synchrotron radiationComputer scienceAstrophysics::High Energy Astrophysical PhenomenaMechanical EngineeringAstrophysics::Instrumentation and Methods for AstrophysicsSynchrotron radiationtelescopesAstronomy and AstrophysicsElectronic Optical and Magnetic Materialslaw.inventionTelescopeFilter designSettore FIS/05 - Astronomia E AstrofisicaTransmission (telecommunications)Space and Planetary ScienceControl and Systems EngineeringlawFilter (video)[SDU]Sciences of the Universe [physics]CalibrationOptical filterInstrumentationDigital filterastrophysics space mission Athena optical and thermal filters Wide Field Imager X-ray Integral Field Unit x-ray transmissionRemote sensing
researchProduct

Filters for X-Ray Detectors on Space Missions

2022

Thin filters and gas-tight windows are used in space to protect sensitive X-ray detectors from out-of-band electromagnetic radiation, low-energy particles, and molecular contamination. Though very thin and made of light materials, filters are not fully transparent to X-rays. For this reason, they ultimately define the detector quantum efficiency at low energies. In this chapter, we initially provide a brief overview of filter materials and specific designs adopted on space experiments with main focus on detectors operating at the focal plane of grazing incidence X-ray telescopes. We then provide a series of inputs driving the design and development of filters for high-energy astrophysics sp…

X-ray filters X-ray detectors Thermal filters Optical blocking filters Filter modeling Filter characterization Filter calibration Space missionsSettore FIS/05 - Astronomia E Astrofisica
researchProduct

Surface investigation and aluminum oxide estimation on test filters for the ATHENA X-IFU and WFI detectors

2016

The ATHENA mission provides the demanded capabilities to address the ESA science theme "Hot and Energetic Universe". Two complementary instruments are foreseen: the X-IFU (X-ray Integral Field Unit) and WFI (Wide Field Imager). Both the instruments require filters to avoid that the IR radiation heats the X-IFU cryogenic detector and to protect the WFI detector from UV photons. Previous experience on XMM filters recommends to employ bilayer membrane consisting of aluminum deposited on polyimide. In this work, we use the X-ray Photoelectron Spectroscopy (XPS) to quantify the native aluminum oxide thickness that affects the spectral properties of the filter. The estimation of the oxide thickne…

PhotonMaterials sciencebusiness.industryPhotoemission spectroscopyInfraredAthena mission thermal filters aluminum oxide.thermal filtersDetector02 engineering and technologyRadiation021001 nanoscience & nanotechnology01 natural sciences7. Clean energy010309 opticsaluminum oxideOpticsSettore FIS/05 - Astronomia E AstrofisicaX-ray photoelectron spectroscopyFilter (video)0103 physical sciencesPrototype filter0210 nano-technologybusinessAthena mission
researchProduct

Temperature effects on the performances of the ATHENA X-IFU thermal filters

2016

The X-Ray Integral Field Unit (X-IFU) detector on-board ATHENA is an array of TES micro-calorimeters that will operate at ~50 mK. In the current investigated design, five thermal filters (TF) will be mounted on the cryostat shields to attenuate IR radiative load and avoid energy resolution degradation due to photon shot noise. Each filter consists of a thin polyimide film (~50 nm thick) coated with aluminum (~30 nm thick). Since the TF operate at different temperatures in the range 0.05-300 K, it is relevant to study how temperature affects their mechanical/optical performances (e.g. near edge absorption fine structures of the atomic elements in the filter material). Such results are crucia…

CryostatMaterials scienceAbsorption spectroscopybusiness.industrythermal filtersATHENA missionShot noise02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyATHENA mission thermal filters XANES01 natural sciencesXANESSettore FIS/05 - Astronomia E AstrofisicaOptics0103 physical sciencesRadiative transferCalibration010306 general physics0210 nano-technologybusinessAbsorption (electromagnetic radiation)PolyimideSPIE Proceedings
researchProduct